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Abstract

This thesis aims to design predictive coding (PC) networks that can per-

form discriminative and generative tasks simultaneously. Unlike the hu-

man brain, standard artificial neural networks with backpropagation are

only able to solve one type of problem, such as image classification, gener-

ation, or reconstruction. Accordingly, changing the task can be inefficient,

since we need to restart training even if the same datasets are used. In this

thesis, a bidirectional predictive coding network has been proposed and

proven to own the ability of task-agnostic learning. Furthermore, based on

the bidirectional model, an assembly model simply composed of a cluster

of neurons has been creatively designed, which can not only outperform

the former in associative memory tasks while retaining its capability of

task-agnostic learning, but also achieve efficiency and flexibility at the

level of network architecture.
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1 Introduction

1.1 Background

In 1943, McCulloch and Pitts [3] opened the subject of artificial neural networks

(ANNs) and proposed the first computational model inspired by the structure of the

animal cerebral cortex. After approximately thirty-year development of deep learning,

Werbos’s backpropagation algorithm (BP) [15] which was designed for parameter

updates, enabled practical training of ANNs and built a solid foundation for future

work. Plenty of remarkable success at learning problems was achieved by ANNs with

BP, and even until today, BP has been considered the most widely used and influential

learning architecture in artificial intelligence and machine learning.

However, ANNs with BP were simultaneously criticized for the lack of biological

plausibility. It turns out that computational procedures and principles within BP

are dissimilar to the learning process in biological neural networks of the brain (BL)

[11]. Specifically, the information BP requires to calculate the loss comes from all

previous layers in the network, i.e., the information is locally unavailable, and the

model requires external controls to trigger weight updates. Besides the biological

implausibility, another limitation of BP is that it forces multilayer networks to learn

in one direction along the hierarchy, making the networks task-specific: a network

designed for one task usually has trouble solving problems from different types. Over

these years, approximations of ANNs with BP that can fill in the two gaps have been

the point of discussion.

In terms of biological implausibility, Wittington’s predictive coding networks (PCNs)

[16] with a novel learning algorithm, inference learning (IL) [16] partially overcomes

BP’s limitation by achieving local plasticity. Later on, Song proposed two powerful

PC learning algorithms, zero-divergence inference learning (Z-IL) [11], and Concur-

rent Predictive Coding (CPC) [12], and the latter releases the networks from external

controls and achieves full autonomy. At the same time, another PC model has been

shown to have the capability of performing generative tasks such as associative mem-

ory tasks [10]. Though with great success in both aspects, PCNs still show inflexibility

in task changing and the incapability of simultaneously functioning different types of

tasks.
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1.2 Contributions

In summary, the contributions of this thesis are as follows:

• I propose a novel multilayer bidirectional PC model, B-PCNs, trained to per-

form multiple tasks simultaneously. I empirically test this model in different

generative and discriminative tasks.

• I then generalize this network to a cluster-like architecture, where every pair

of neurons is connected by two different parameters. This new model is called

single assembly networks (SANs) and can learn datasets regardless of the task

it is trained on. Particularly, I have trained it on image classification bench-

marks and showed that it could perform image generation, classification, and

associative memory tasks. Note that this is not possible to do it using ANNs

trained with BP.

• I then conclude by showing that SANs can be seen as a general framework to cre-

ate different types of PCNs by simply pruning specific parameters. This allows

defining models such as standard multilayer networks with residual or recurrent

connections or less standard architectures, such as the aforementioned B-PCNs.

Particularly, I show that deep networks generated this way and trained with

CPC, achieve similar performance compared against standard PCNs trained

with IL and MLPs trained with backpropagation.

1.3 Outline

The thesis is organized as follows:

• In Chapter 2, I give the preliminaries of this thesis. I start by briefly reviewing

the classic ANNs with BP and compare it against PCNs trained with IL, Z-IL,

and CPC. Then, I introduce different topics that will be useful in the later

chapters of the thesis. Particularly, I will talk about associative memories (AMs)

and task-agnostic learning.

• In Chapter 3, I propose a novel task-agnostic PC network, called bidirectional

PC networks (B-PCNs), displaying the model implementation and related al-

gorithms.

2



• In Chapter 4, I generalize the idea behind B-PCNs and propose a novel, fully-

connected architecture, called the single assembly networks (SANs), and develop

a method to create different kinds of neural networks by simply pruning specific

weight parameters of SANs.

• In Chapter 5, I apply B-PCNs and SANs to classification, generation, and

associative memory tasks, compare their performance, and experimentally show

their capability of task-agnostic learning.

• In Chapter 6, I give a discussion about the results of experiments and an

outlook for future study.
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2 Preliminaries

This section will first briefly review the standard artificial neural network and back-

propagation, and analyze their underlying problems. Then, an introduction about

predictive coding networks (PCNs) will be given. Next, three influential algorithms

behind PCNs will be illustrated: inference learning (IL), which is considered a close

approximation of BP, zero-divergence inference learning (Z-IL), which is a modifica-

tion of IL that exactly replicates the weight update of BP, and Concurrent Predictive

Coding (CPC), which outperforms the first two in terms of efficiency and biological

plausibility while providing equivalent prediction accuracy. Lastly, limitations of cur-

rent PCNs will be presented, and I will further explain the motivation of the thesis

by introducing the concept of associative memories and task-agnostic learning.

2.1 ANNs with BP

ANNs are composed of artificial neurons in the multilayer structure. Each artificial

neuron receives inputs from neurons in the adjacent previous layer and produces a

single output sent to multiple neurons in the following layer. Therefore, the learning

process of the neural network can be formulated as an optimization problem: we are

asked to seek the parameter θ to minimize the loss L of the training data set of inputs

x and labels y, as below:

minE(L(y, P (x; θ))), (1)

where P denotes the predicted labels generated by the neural network with parameters

θ, including weights and biases. The difference between predicted output and the

true label is quantified by the loss function, and then the expected value is computed

among the training data set.

BP was proposed to solve the optimization problem above [8]. During each learn-

ing epoch, stochastic gradient descent will be used in conjunction to minimize the

expected loss. Weight update, with respect to the parameters θ, will be computed

based on the gradient descent update rule,

θ ← θ − α∆θL(P (x; θ), y), (2)

where α is a positive constant called the learning rate.
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BP is considered one of the most effective learning algorithms in deep artificial neural

networks and can be generalized to a wide range of tasks with outstanding perfor-

mance. Nevertheless, ANNs with BP has been criticized for its lack of biological

plausibility, i.e., the way it processes the information is dissimilar to cortical process-

ing, because of two significant reasons:

Lack of local plasticity: As inferred in Eqs. 1 and 2, parameter updates performed

by gradient descent follows the calculation of loss function, which only happen in the

output layer. Hence, information for weight updates is locally unavailable. This is

in contrast with biological networks present in the brain, which only rely on local

information to update the strength of the synapses.

Lack of full autonomy: External triggers are required as the weight updates happen

at the end of each epoch. On the other hand, the human brain learns with full

autonomy, and no external control is needed.

As a result, many efforts have been devoted to the construction of novel models and

algorithms which can mimic the process of human brain more precisely, and overcome

the limitation of BP while, at the same time, approximating its excellent performance.

2.2 PCNs

In 1992, Mumford proposed a hypothesis that predictive coding (PC) is a processing

strategy taking place in cortical networks [4]. The prediction was sent down from the

top layer of the hierarchical network. With PC, each layer only uses locally available

information and communicates with adjacent layers. Each neuron makes an inference

about what state the neurons in the next lower layer should be in and compares its

current state with the inference received from a higher layer. In 1999, Rao applied

this idea and designed predictive coding networks (PCNs), a hierarchical multilayer

model of information processing. Rao used PCNs to conduct unsupervised learning

and model the visual processing in the cerebral cortex. Specifically, one side of the

model, called the input layer, is clamped to the input images, and neurons in all other

layers are free to converge. The inference is sent from the output layer to the input

layer.

In 2017, Wittington and Bogacz [16] applied Rao’s model to solve classification prob-

lems after creative modification. Unlike Rao, Wittington clamped both sides of the

5
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Figure 1: Cited from [11]. Items in the figure: the structure of ANN with BP (top);
the structure of PCNs with IL proposed by Wittington. Inference values (blue nodes)
are sent from a lower layer (l+1) to a higher layer l, εli,t, the error between the values
in the current nodes xli,t and the prediction µli,t is used to update the inferred values
in a higher layer (l − 1).

hierarchical network, and inference is sent in the opposite direction, i.e., from the

input layer to the output one. Simultaneously, they formally introduced the concept

of inference learning (IL), the fundamental learning algorithm behind PCNs that

enables models to infer values of neurons in hidden layers. We now introduce the

architecture of PCNs and the mechanism of IL.

Following [11], this thesis denotes the layer index by l. l = 0 denotes the output layer

and l = lmax denotes the input layer. Also, we use forward or top-down to describe

a pass from layer lmax to layer 0, i.e., the direction in which Wittington’s model

sends the inference, and backward or bottom-up for the opposite, i.e., the direction of

running inference in Rao’s model. Furthermore, we use x̄ = (x1, x2, . . . , xn) to denote

n-dimensional vectors.

IL The learning process of PCNs trained with IL can be described in two stages: (1)

the learning stage: true labels are provided, and the goal is to update parameters to

learn the connections within datasets, and (2) the prediction stage: no label provided

and the model is expected to generate correct labels based on the current parameters.

We will denote by t the time axis during inference, and by (s̄in, s̄out) labelled data

points. Each neuron has a value node (the blue nodes in Fig. 4), which is a learnable

parameter denoted by xli,t. Here, i represents the i-th neuron of the l-th layer. Each

value node is associated with an error node εli,t representing the error of the prediction.

The major difference from BP is that IL enables PCNs to manipulate the value nodes

of hidden layers via inference learning. Particularly, the value nodes from the layer

(l + 1) are used as an input to make predictions in the layer l. Generally, it follows
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the rules:

µli,t =
nl+1∑
j=1

θl+1
i,j f(xl+1

j,t ) and εli,t = xli,t − µli,t, (3)

where µli,t denotes the predicted value of xli,t at time t,and f is a non-linear activation

function. The overall energy function at a time step t is defined as the sum of the

errors:

Ft =
1

2

lmax∑
l=0

nl∑
i=1

(εli,t)
2, (4)

where nl denotes the number of neurons in layer l. The goal of the learning algorithm

is to minimize the energy function Ft. While the network is running inference, each

value node xlj,t moves towards µli,t following the rule:

xli,t+1 = xli,t + ∆xli,t, (5)

where ∆xli,t is defined as:

∆xli,t =


0 if l = lmax

γ · (−εli,t + f ′(xli,t)
∑nl−1

k=1 ε
l−1
k,t θ

l
k,i if l ∈ {1, ..., lmax − 1}

0 if l = 0 during learning
γ · (−εli,t), if l = 0 during prediction.

(6)

γ denotes the integration step for the value nodes. During the learning phase, the

value nodes in the input layer l = lmax are fixed to s̄in, and those in the output layer

l = 0 are fixed to s̄out, i.e.,

ε0i,t = x0i,t − µ0
i,t = s̄outi − µ0

i,t. (7)

The rest neurons are free to converge. The training pair will be presented to the

model for the duration of T . At t = tc, where tc is fixed number and tc ≤ T , the

network will reach an equilibrium and the total energy of the model will converge to

a constant. Then, all weight parameters will be updated according to:

θl+1
i,j = θl+1

i,j + ∆θl+1
i,j , (8)

where ∆θl+1
i,j is defined as:

∆θl+1
i,j = −α · ∂Ft/∂θl+1

i,j = α · εli,tf(xl+1
j,t ). (9)
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During the prediction phase, only value nodes in the input layers will be fixed to s̄in,

and the network will run inference again based on the current weight parameter θli,t.

The error will be optimized to zero as t → ∞, then µ0
i,0 will be the predicted labels

for each data point.

It can be noticed from Eqs. 6 and 9 that updates of weight and value nodes rely

solely on local information in PCNs, unlike in ANNs with BP, which calculates the

error in the output layer and updates the weight parameters in all the previous layers

accordingly. From this, we can conclude that PCNs with IL have the property of

local plasticity. The learning algorithm is displayed in Alg. 1.

Algorithm 1 Learning (s̄in, s̄out) in duration T, PCNs with IL

Require: x̄lmax
0 is fixed to s̄in, x̄00 is fixed to s̄out

for t = 0 to T do
for each neuron i in each level l do

Update xli,t to minimize Ft via Eq. (6)
if t = tc then

Update each θl+1
i,j to minimize Ft via Eq. (9)

end if
end for

end for

Nevertheless, it can be realized that IL only updates weight parameters once at t = tc,

and such restriction indicates that (1) this model is far less efficient than BP, and (2)

that external controls are still required, and therefore PCNs with IL fail to achieve

full autonomy as desired. Hence, further improvements are needed.

Z-IL Proposed in Song’s article [11], IL with zero divergence from BP (Z-IL) solves

the first problem to some degree. It differs from IL in two main aspects. First, Z-IL

sets xlj,t = µli,t for every neuron before starts learning, i.e., set εlj,t = 0. By doing

this, Ft can decay to zero in the learning phase, and the first forward pass can be

considered identical to the learning pass in feed-forward ANNs with BP. Since BP runs

much faster in general than inference, Z-IL significantly improves the efficiency of the

original algorithm. Second, rather than performing all weight updates at t = tc, Z-IL

requires the network to update weights θlkj,t in the layer lk at t = lk. The equations

used to update value nodes and weights are identical to Eqs. 6 and 9. The learning

algorithm is shown in Alg. 2.
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Algorithm 2 Learning (s̄in, s̄out) in duration T, PCNs with Z-IL

Require: x̄lmax
0 is fixed to s̄in, x̄00 is fixed to s̄out

Require: xli,0 = µli,0 for l ∈ 1, ..., lmax − 1, and γ = 1.
for t = 0 to T do

for each neuron i in each level l do
Update xli,t to minimize Ft via Eq. (6)
if t = l then

Update each θl+1
i,j to minimize Ft via Eq. (9)

end if
end for

end for

As formally proven in the original paper [11], if we set the integration step γ to 1,

Z-IL is able to achieve the exact same parameter update as BP, and updating θlki,j at

time lk improves the autonomy to some degree. Nevertheless, this network again fails

to achieve full autonomy since we need to check t = l for each l. We now introduce

another algorithm proposed based on Z-IL that successfully frees the conditions.

2.3 CPC

Concurrent Predictive Coding (CPC), proposed by Song [12], owns two competitive

properties: full autonomy and high efficiency.

CPC has the identical energy function with IL, namely defined by Eq. 4. Simulta-

neously, they use identical formulas to update xli,t and θli,j, shown in Eqs. 6 and 9.

The only difference between the two algorithms is that, rather than update all θli,j

once when the inference converges (t = tc) or update θlki,j for each layer at t = lk,

CPC constantly updates all θli,j while updating xli,t. Clearly, no extra control signal

is needed.

In CPC, We will set µli,0 to xli,0 as in Z-IL. After Ft decays to zero or t = T , the

learning phase terminates and the model applies the current weight parameters and

runs inference to make a prediction. The learning algorithm is shown in Alg. 3, and

Fig. 2 directly visualizes the difference between IL, Z-IL and CPC.

As the first learning algorithm for deep neural networks which allows neurons to work

fully autonomously, CPC overcomes the biological implausibility of BP. Further, it is

proven to be faster than BP and IL while achieving comparable performance.

9



Algorithm 3 Learning (s̄in, s̄out) in duration T, CPC

Require: x̄lmax
0 is fixed to s̄in, x̄00 is fixed to s̄out

for t = 0 to T do
for each neuron i in each level l do

Update xli,t to minimize Ft via Eq. (6)

Update each θl+1
i,j to minimize Ft via Eq. (9)

end for
end for

Figure 2: Left: visualization of the process of weight updates in IL, Z-IL and CPC,
cited from [12]. Right: important notations which help understand this figure.
We can see that with IL the network updates all weight parameters at t = tc, and with
Z-IL it updates the weights for layer lk at t = lk. A network with CPC constantly
updates weights in all layers along with the training.

2.4 Associative memory

Associative memory (AM) is a psychological concept defined as the ability to mem-

orize and learn the relationship between unrelated objects. In machine learning,

associative memories are pattern storage and retrieval systems composed of two dif-

ferent forms: auto-associative memories and hetero-associative memories. While both

indicate the ability to recall patterns of inputs, hetero-associative memories represent

the ability to make associations between concepts from different categories. For ex-

ample, in Fig. 3(a), the network will recall the concept of ”fish” when provided with

the concept of ”cat”. On the contrary, auto-associative memories represent the ability

to recall patterns of data points while given the corrupted version. For example, the

network will recall the original cat image when provided with the top half of it or a

blurry version of it (Fig. 3(b)).

Many efforts have been devoted to the development of AMs in recent years, especially

10
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Figure 3: Visualization of hetero-associative memories (a) and auto-associative mem-
ories (b).

in the area of auto-associative memories. As one of the most classic and challenging

tasks in auto-associative memories, image reconstruction expects the model to recover

the data based on the corrupted images. Fig. 3(b) displays two significant types of

reconstruction are (1) retrieval from corrupted data points with noise (top) and (2)

retrieval from partial data points (bottom).

Associative memories were first proposed by Steinbuch [13], and in 1982, Hopfield

designed a discrete energy-based model that memorizes and retrieves data points by

minimizing a suitable energy function [2]. It generally consists of one single layer of

neurons related to the input and output size, which must be identical. The model

stores the binary patterns of images and takes partial data as attractors to do image

reconstruction. Other types of models are also found showing excellent performance

these years. For example, standard over-parameterized neural networks trained with

standard optimization methods can implement AMs [6]. In contrast to the Hopfield

model, the memorization and retrieval mechanisms in over-parameterized networks

are automatic after the training phase and do not require the construction and min-

imization of an energy function.

It turns out that PC is naturally related to AMs. As discussed previously, Rao

proposed the first PC model for generative tasks [7]. While Wittington was working

on its application in classification, some researchers followed Rao’s work and trained

PC networks as autoencoders rather than classifiers, even though most of the time,

these networks can only reconstruct samples from a specific class [14]. In 2021,

Salvatori implemented AMs with Rao’s bottom-up PCNs, which achieved outstanding

performance in reconstruction [10].
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2.5 Task-agnostic learning

Before presenting the models proposed in this thesis, we shall first introduce the con-

cept of task-agnostic learning. By saying it, we indicate that a model can simultane-

ously perform generative and discriminative tasks without re-training. Task-agnostic

learning shows substantial similarity with cortical processing, as in daily life, we usu-

ally do not need to be specifically trained for a particular task before performing it.

For example, we can use the generic knowledge to distinguish a cat from other ani-

mals, draw a cat, or draw a cat’s body when shown with its head. On the contrary,

most ANNs are trained for a specific task, and performing different types of tasks

is usually implausible at the level of architecture. In other words, when we want to

switch between tasks even over the same datasets, we need to restart training with a

different model, which can be inefficient and inflexible.

2.6 Short summary

Based on the previous discussion, the primary goal of this thesis is to propose a

model which can overcome ANNs and PCNs’ limitations of being task-specific and

can switch flexibly among different test modes after the learning phase.
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Figure 4: This figure visualizes B-PCNs. (a) shows an overview of the network
structure. Every two neurons is connected in the forward and backward directions.
The input, digit 3, is fixed to neurons in layer lmax(3 in this case), and neurons in
the output layer (l = 0) relate to the 1-hot label. (b) shows a concrete structure of
a neuron, including a value nodes and two error nodes and presents how it relates to
neurons in adjacent layers.

3 Bidirectional PCNs

As stated in the previous chapter, different PCNs are proven to be able to conduct

classification or AM tasks, and the significant difference between the structure of Wit-

tington’s model (the discriminative model) and Rao’s model (the generative model) is

the direction of inference sending. Therefore, intuitively, a network running inference

in both directions might be equipped with the ability of both models simultaneously

and achieve task-agnostic learning. I hence propose a novel model, bidirectional

predictive coding networks (B-PCNs) based on this hypothesis.

In general, a backward pass is now added to Wittington’s PCNs: for the i-th neurons
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in layer l, except sending its value to neurons in layer (l − 1), it also sends the value

to neurons in layer (l + 1). Therefore, B-PCNs run inference processes in opposite

directions: the first one is sent down the hierarchy, and the other is sent up. Fig. 4

displayed the structure with a sample network consisting of 2 hidden layers, each

including 2 neurons.

It might still be unclear why we do not modify ANNs and run BP bidirectionally

to achieve task-agnostic learning. The major reason is that cycles are introduced

after a backward pass is added. If a cycle is presented inside the neural structure

of ANNs, an infinite loop would be created during the first forward pass, and hence

would make learning not feasible. On the contrary, since PCNs solely rely on locally

available information for parameter updates, inverting the direction of learning and

incorporating cycles can be achieved.

3.1 Network architecture

Similar to feed-forward PCNs, each neuron in the bidirectional architecture contains

a value node (the blue ones, with the activities of xli,t), yet simultaneously associated

with two corresponding prediction-error nodes (red ones for the forward error, and

yellow ones for the backward error, with the activity εli,t and ε̂li,t). Assume we have

neuron i in layer l and neuron j in layer (l − 1). The edge between i and j now has

two weight parameters: θli,j, which denotes the weight from i to j, and θl−1j,i , which

denotes the weight from j to i. Specifically, the i-th neuron in layer j sends θli,jf(xli,t)

to j and neuron j sends θl−1j,i f(xl−1j,t ) back to i, where f denotes activation function.

Prediction and error are calculated based on the formula:

µli,t =
nl+1∑
j=1

θl+1
j,i f(xl+1

j,t ) and εli,t = xli,t − µli,t (forward) (10)

µ̂li,t =
nl−1∑
q=1

θl−1q,i f(xl−1q,t ) and ε̂li,t = xli,t − µ̂li,t (backward). (11)

Eq. 10 is identical to Eq. 3. In Eq. 11, µ̂li,t denotes the backward predicted value

of neuron i in layer l at time t, calculating by applying the activation function f to

each value node xl−1q,t in a lower layer, multiplying it by the backward weight θl−1q,i and

doing summation over all the neurons in layer (l − 1). ε̂li,t quantifies the difference
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between the actual value node and backward prediction, and the goal is to minimize

the overall energy Ft, defined as follows:

Ft = F forward
t + F backward

t =
lmax∑
l=0

nl∑
i=1

1

2
((εli,t)

2 + (ε̂li,t)
2). (12)

Clearly, xli,t has to move close to both µli,t and µ̂li,t in the training phase, and eventually

find a balance between the red nodes and yellow nodes. xli,t will be updated according

to Eq. 5, where ∆xli,t is defined as:

∆xli,t =



0 if l = lmax during prediction

γ · (−εli,t + f ′(xli,t)
∑nl−1

q=1 ε
l−1
q,t θ

l
q,i), if l = lmax during learning

γ · (−εli,t + f ′(xli,t)
∑nl−1

q=1 ε
l−1
q,t θ

l
q,i

+ f ′(xli,t)
∑nl+1

k=1 ε̂
l+1
k,t θ

l
k,i), if l ∈ {1, ..., lmax − 1}.

0 if l = 0 during prediction

γ · (−εli,t + f ′(xli,t)
∑nl+1

k=1 ε̂
l+1
k,t θ

l
k,i), if l = 0 during learning

(13)

γ is the integration step for xli,t. Inference happens in both the learning and prediction

phase as in the feed-forward PCNs.

Learning: Given the training pair of data (sin, sout), the value nodes of the input

layer are fixed to sin, and the value nodes of the output layers are fixed to sout. Hence,

ε0i,t = x0i,t − µ0
i,t = sout − µ0

i,t (14)

ε̂lmax
i,t = xlmax

i,t − µ̂
lmax
i,t = sin − µ̂lmax

i,t . (15)

xli,t and θli,t are updated constantly and simultaneously in both direction to minimize

Ft. Specifically, the rule to update θli,t is as follows:

∆θli,j = −α · ∂Ft/∂θli,j = α · εli,tf(xl+1
j,t ) + α · ε̂li,tf(xl−1j,t ), (16)

where α is the learning rate. µli,t is set to xli,t at the beginning, so εlk,t and ε̂lk,t will

decay to 0 at t = tc where tc ≤ T . The learning algorithm is shown in Alg. 4.

Test: B-PCNs are capable of performing three type of tasks: classification, gener-

ation and AM tasks. In general, the only difference among three modes is the way

to fix the value nodes in layer lmax and layer 0.
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Algorithm 4 Learning (s̄in, s̄out) in duration T, Bidirectional PCNs

Require: x̄lmax
0 is fixed to s̄in, x̄00 is fixed to s̄out

for t = 0 to T do
for each neuron i in each level l do

Update xli,t to minimize Eq. (12) via Eq. (13)

Update each θl+1
i,j to minimize Eq. (12) via Eq. (16)

end for
end for

Mode xlmax
i,t xl0i,t Results

Classification all to sintest free to converge µ0
i,t

Generation free to converge all to sout µlmax
i,t

AM tasks
fix x̄′ to s̄in

′
, the rest

free to converge
all to sout

µlmax
k,t , where

xlmax
k,t ∈ (

⋃
(xlmax

i,t ) - x̄′)

Table 1: The table displays the difference among three test modes by showing how to
fix the value nodes (column 1 and 2) and what we should consider as results (column
3) during each test mode.

The answers to the first two can be intuitive. As shown in Tab. 1, in classification,

the value nodes in the input layer, xlmax
i,t , are fixed to images from the test set, sintest;

in generation, value nodes in the output layer, x0i,t, are fixed to sout, the labels of

the images which we want to generate. All other neurons are free to converge.

It can be a little complicated for AM tasks, and we now introduce the parameters

in details. The mechanism is presented vividly in Fig. 5. Specifically, this thesis only

focuses on the recovery of cropped images, so for any input s̄in, we partially crop it

to s̄in
′

such that

s̄in
′ $ s̄in. (17)

For example, in Fig. 5, s̄in denotes the the full cat image provided in learning, and

s̄in
′
denotes the the half cropped cat image provided before the network performs AM

tasks.

Assume neurons fixed to s̄in
′

during the training phase is x̄′. In the AM tasks, we

will fix x̄′ to s̄in
′

again, whereas (
⋃

(xlmax
i,t ) - x̄′) will be free to converge. In the

cat example, x̄′ represents values of the top two neurons clamped to the partial cat
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Figure 5: This figure visualizes how B-PCNs learn (left) and reconstruct (right) image
of a cat. Orange value nodes are fixed, and green and red nodes are free to converge.
After Ft decays to zero, the predicted values of the red nodes are the reconstructed
portion.

image, and (
⋃

(xlmax
i,t ) - x̄′) apparently represents the values of other two neurons in

the leftmost layer. Simultaneously, value nodes in layer 0, x0i,t, will be fixed to labels

of the images we want to reconstruct, sout. All value nodes in the hidden layers are

free to converge.

In each mode, the network will use the current weight parameters to run inference

forward and backward, updating the unfixed value nodes. When t→∞, εli,t and ε̂li,t

both decay to 0.

Tab. 1 summarizes the results for all three modes. In classification, the predicted

values of neurons in layer 0, µ0
i,t, will be the labels constructed by the network; in

generation, the predicted values of the neurons in layer lmax, µ
lmax
i,t , will be the images

constructed by the network; for reconstruction, the predicted values of unfixed nodes

in layer lmax will be the reconstructed portion.

3.2 Further exploration

We showed that adding a backward pass to Wittington’s PCNs and making it bidi-

rectional achieve task-agnostic learning theoretically. We shall then intuitively ask

another question: will the model performs even better if we go further, adding passes

across the hierarchy or entirely breaking the multilayer structure? To be specific, now

neurons in layer l can only connect to the neurons in the adjacent layers, (l+ 1) and

(l−1). What if we allow it to send the inferred values to and receive error signal from

neurons in layer (l − 2) or (l + 2)? Further, what if we allow each neuron to freely

and bidirectionally connect to any neuron in the model except itself? To find answers
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to these questions, we break the hierarchical structure of B-PCNs and generalize it

to another network including only a cluster of neurons without layers - the single

assembly network.
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Figure 6: This figure shows the computational model proposed by Papadimitriou
[5] called the assembly calculus. In general, a block represents an assembly including
multiple fully connected neurons associated with a specific task. The whole block gets
excitatory while receiving the associated external stimulus. For example, if the top-
left assembly is related to sound, all the neurons inside it will fire when someone hears
talking. Green arrows represent the recurrent connections, and red ones represent
connections between two assemblies in the directions implied by the arrow symbols.

4 SANs

A formal computational model of the brain based on assemblies of neurons called the

assembly calculus proposed in [5] drew our attention at this time. As shown in Fig. 6,

the elementary entity of the Assembly Calculus is a set of fully connected excitatory

neurons which all belong to the same brain area and can near-simultaneously fire

when given a specific task [5]. Inspired by the work, we realized that one single

PC layer could be suitable for implementing the single assembly structure in animal

cortex, as the model can freely construct bidirectional connections between neurons.

However, the assembly calculus is a theoretical model and the functionality of it has

not been proven in practice. Hence, I now propose a network with the structure of

a cluster of fully connected neurons called the single assembly networks (SANs), and

prove its functionality in classification, generation, and AM tasks.
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Figure 7: (a) Proposed assembly of neurons, an example with three neurons (left).
Neural implementation of the proposed the assembly of neurons (right, in the gray
box), where all computation is made locally via demonstrated inhibitory and excita-
tory connections. (b) Learning of an assembly of neurons, where the value node of
every sensory neuron is fixed to the entries of s̄in. In this case, s̄in corresponds to the
pixels of an handwritten digit image and its 1-hot label.

4.1 Network architecture

The idea of assemblies is defined as predictive coding graphs (PCGs), a directed com-

plete graph of neurons that resembles a single assembly shown in Fig. 6. Let G(V, E)

be a directed complete graph, where V is a set of N neurons {v0, . . . , vN} and E is a

set of directed edges between them, where every edge ei,j has two weight parameter:

θi,j, which denotes the synaptic strength applied while we send values from neuron i

to neuron j, and θj,i which denotes the strength from j to i.

The network randomly chooses k neurons and defines them as sensory neurons, which

are used to receive the external stimuli. k equals the sum of the dimension of data

and labels. For example, in Fig. 7(b), the assembly should have (784 + 10) sensory

neurons to learn MNIST.

Fig. 7(a) shows the structure of SANs in details. As in PCNs, each neuron has a

value node (the green node), xi,t , which is a trainable parameter, and a error node

εi,t (the red one), defined by

εi,t = xi,t − µi,t, (18)

where µi,t are the predicted values generated according to:

µi,t =
N∑
j 6=i

θtj,if(xj,t). (19)
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Figure 8: This figure visualizes how SANs process the information in four modes:
learning (top-left), classification (bottom-left), generation (top-right), and AMs
(bottom-right). Indices of neurons are used for easy description and do not imply
orders. In this case, sensory neurons are neuron 1, 2, 5, and 6. Predicted values of
the red nodes are the results gained in that test mode.

f is an activation function and the summation is over all the vertices vj connected to

vi. Note that we add an index t to θ here, which represents the time axis. The goal

is to minimize the energy function:

Et =
N∑
i=0

1

2
(εi,t)

2. (20)

Note that we do not need the layer index l nor two error nodes as in B-PCNs, as the

assembly model does not have any hierarchical structure as standard deep learning

networks. Rather than sending inference forward or backward, each neuron vi simply

sends its value xi,t to all other neurons vj ∈ V , while using all xj,t to predict its

current state and calculate the error. I now show how SANs work in the learning

mode and different test modes.

Learning: The value nodes of sensory neurons are fixed to a training point s̄. For

supervised tasks, where points are labeled and are denoted as (s̄in, s̄out), we assume

that the input vector s̄ is simply the concatenation of the data point and its label.

Since all neurons are identical, we can set the first k neurons to be sensory neurons,

where k equals the sum of input dimension and output dimension ((784 + 10) for
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MNIST). More formally, we assume that the sensory neurons are {v0,..., vk}, such

that

xc1,t = s̄in, c1 ∈ {0, ..., k0} and xc2,t = s̄out, c2 ∈ {k0 + 1, . . . , k}, (21)

where k0 equals the input dimension.

The rest neurons are free to converge. Particularly, weight parameters and value nodes

are updated simultaneously to minimize Et according to the following equations:

∆xi,t = −γ · ∂Et/∂xi,t = γ · (−εi,t + f ′(xi,t)
∑N

k=1εk,tθ
t
k,i) (22)

∆θti,j = −α · ∂Et/∂θti,j = α · εi,tf(xj,t), (23)

where γ is the integration step of inference, and α is the learning rates for weight

updates. We use CPC to update the parameters. Inference will be running bidirec-

tionally between every two distinct neurons. Training runs for t = T iterations, or

until the total energy of the model decays to 0. The learning algorithm is displayed

in Alg. 5.

Algorithm 5 Learning (s̄) in duration T, Single Assembly

Require: Fix the value nodes of sensory neurons to input s̄
for t = 0 to T do

for each neuron i do
Update xi,t to minimize Et via Eq. (22)
Update each θti,j to minimize Et via Eq. (23)

end for
end for

Test: I now show SANs are task-agnostic and capable of performing the classifica-

tion, generation and AM tasks. Similar to B-PCNs, the only difference among

the three modes is the way of fixing the value nodes. The mechanisms are visualized

in a simple way in Fig. 8. This thesis will focus on the supervised learning only.

Hence, for the sensory neurons {v0, . . . , vk}, in the classification mode, we will fix

xc1,t, c1 ∈ {0, ..., k0} to s̄intest, where s̄intest denotes the test inputs we used. In genera-

tion, we fix xc2,t, c2 ∈ {k0 + 1, . . . , k} to s̄outtest, where s̄outtest denotes the 1-hot labels of

inputs we hope to generate.

After fixing the related sensory neurons, inference runs bidirectionally, and all other

neurons in the assembly are free to update their value based on the weight parameters
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Mode xc,t, c ∈ {0, . . . , k} Results

Classification
xc1,t, c1 ∈ {0, ..., k0} to sintest,

the rest free to converge
µc2,t,

c2 ∈ {k0 + 1, . . . , k}

Generation
xc2,t, c2 ∈ {k0 + 1, . . . , k} to s̄out,

the rest free to converge
µc1,t,

c1 ∈ {0, ..., k0}

AM

fix x̄′ to s̄in
′
,

fix xc2,t to s̄out, where
c2 ∈ {k0 + 1, . . . , k},

the rest free to converge

µc3,t, where xc3,t ∈
(
⋃

(xc1,t) − x̄′, c1 ∈ {0, ..., k0}

Table 2: The table displays the difference among three test modes of the assembly
model, showing which neurons should be fixed (column 1 and 2) and what we should
consider as a result (column 3) of each mode.

gained from the training phase until Et converges to zero. Tab. 2 succinctly shows the

results in each mode. Generally, the generated labels of test inputs in the classification

mode equals µc2,t, c2 ∈ {k0 + 1, . . . , k}, i.e. the predicted values of sensory neurons

fixed to the labels in the training phase. On the other hand, the images constructed

in the generation mode equal to µc1,t, c1 ∈ {0, ..., k0}, i.e., the predicted values of

sensory neurons fixed to the inputs in the training phase.

For the AM mode, we first define the cropped images as ¯sin′ , following Eq. 17, and

denote x̄′ the neurons which were fixed to ¯sin′ during the training phase. At the

beginning of the retrieval process, we fix x̄′ to ¯sin′ and xc2,t, c2 ∈ {k0 + 1, . . . , k} to

s̄out as in the training phase. The rest neurons are free to converge. After the energy

function decays to zero, the reconstructed portion should be the predicted values of

the sensory neurons, which were fixed to the inputs image in the training phase yet

free to converge in the AM mode, defined formally in the Tab. 2.

4.2 Density of SANs

SANs are now defined to be fully connected, and bidirectional edges exist between

every two neurons in the graph. At this point, another intuitive question appears:

is it possible to prune some connections and make SANs non-fully connected? The-

oretically, as parameter updates rely solely on locally available information, adding

or pruning edges will not influence the function of SANs. We may realize that the
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feasibility of precisely carving SANs indicates the possibility of gaining B-PCNs from

SANs directly. In other words, we can interpret B-PCNs as a subtype of non-fully

connected SANs with specific edges pruned.

4.2.1 Randomly pruning

Before turning to the carving problem, we start with a simpler task: randomly pruning

some edges from fully connected SANs (FC-SANs). Specifically, we now define a

matrix θ̄ ∈ RN×N , where θi,j represents the synaptic strength connecting neuron i to

neuron j (direction implied). We then define a 1-hot mask matrix M ∈ RN×N , where

Mi,j = 1 if the edge ei,j exists, and Mi,j = 0 otherwise. For FC-SANs, Mi,j = 1 for

all i 6= j.

Given θ̄ and M , we now define a parameter related to the density of SANs, s, a

constant between [0, 1] which means that we randomly prune (1 − s) edges from

SANs. Specifically, we apply s to M following:

M = (M ′ < s), (24)

where M ′ is a N by N matrix consisting of random numbers from a uniform distribu-

tion on the interval [0, 1). Note that for any k such that xk,t is a sensory neuron, mk,i

or mj,k should be set to 1, or the network may fail to read inputs or print outputs.

After multiplying θ̄ by M , we will have SANs with density s. Clearly, SANs stay fully

connected when s = 1.

4.2.2 Carving SANs to B-PCNs

It can be realized that getting B-PCNs from SANs is easily achievable by manipulating

entities of M . Take the network shown in Fig. 9 as an example. We can interpret it

as applying M to FC-SANs of 6 neurons, where M equals:
0 0 1 1 0 0
0 0 1 1 0 0
1 1 0 0 1 1
1 1 0 0 1 1
0 0 1 1 0 0
0 0 1 1 0 0

 . (25)

Fig. 9 visualizes the process of pruning.
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Figure 9: The figure displays how we can curve fully-connected SANs (left) to B-
PCNs (right). Edges in red are those we want to prune by applying the mask matrix.
Both models run inference bidirectionally along each edge.

B-PCNs can be easily constructed based on given SANs through this method.

4.2.3 Generalization

We can further generalize this method to constructing other standard neural archi-

tectures by pruning from or even adding connections to FC-SANs. Following the

notations in chapter 2 and 3, in a fully connected graph G(V,E), we denote the pass

from neuron i to j as forward and j to i as backward if i > j. Therefore, it can be

noticed that the entities of M above diagonal determine the existence of forward

passes between every two neurons, and the entities below determine the backward

ones. Those on the diagonal are indicators of recurrent connections. In general,

the weight and mask matrices allow the creation of unidirectional architectures such

as multilayer perceptrons (MLPs) and the variations (MLPs with recurrent and/or

residual connections) (Fig. 10). We take SANs shown in Fig. 9 as an specific example

again. To make Wittington’s PCNs, we can set M to:
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 . (26)

PCNs constructed through this weight-mask method is proven to be equivalent to

standard PCNs, and running it with CPC achieves 98.44% accuracy over the MNIST

database as models in [12]. Therefore, this thesis confidently declares that this method
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Recurrent Net  Residual Net       Bidirectional Net

MLP

Figure 10: This figure shows the examples of networks that can be built by masking
part of the weights of an assembly. Left: an example of how to build a standard MLP
architecture. Particularly, the weight matrix θ̄ is pruned via entry-wise multiplication
with the represented binary matrix M . Right, different variations of an MLP are
presented. From left to right: a network with recurrent in-layer connections, a network
with residual connections (the black diagonal line below the green squares represents
entries equal to one), and a network with backward connections between layers. Note
that the three methods can be merged in any combination: it is in fact possible to
generate a recurrent network with bidirectional and residual connections by simply
updating the mask M .

successfully bridges the gaps between different neural architecture without degrading

the performance of models.

Detailed experiments and results related to classification, generation, and AM tasks

will be included in the following chapter to prove the capability of task-agnostic

learning in practice. Note that this thesis will mainly focus on B-PCNs and SANs

at the experimental level, comparing their performance in three types of experiments

with each other as well as with some classic neural networks.
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5 Experiments and Results

In the previous chapter, I proved that task-agnostic learning is achievable by B-

PCNs and SANs theoretically. I now show the performance of the two models in the

classification, generation, and AM tasks and prove their capabilities experimentally.

5.1 Classification

Classification tasks are conducted over full MNIST dataset, a image collection in-

cluding 60000 greyscale handwritten digits from 0 to 9. In general, I first conducted

multiple experiments for each network by changing the number of hyperparameters

to see how the structure of a network influences test accuracy. After that, I explored

how long it will take for a model to get the optimal prediction accuracy by studying

the number of epochs (H), the duration of presenting a training pair in the training

phase (T ), and a test pair in the test phase (Ttest). Finally, I assessed the stability of

each network and compared their performance with some classic neural networks.

5.1.1 B-PCNs

Experiments on model structure: As we usually did for multilayer networks, I

manipulated the number of hidden layers, L, and the dimension of hidden layers,

hidden dim, to find their influence over the prediction accuracy. Specifically, I set

L = {1, 2, 3, 4} and hidden dim = {2048, 4096, 6144, 8000, 10000}. All hidden layers

share an identical dimension.

Results: Increasing the number of layers does not improve the performance accord-

ingly. From Tab. 3, we can see that B-PCNs with multiple hidden layers do not

outperform B-PCNs with a single hidden layer regardless of the layer dimension. For

hidden dim, inadequate neurons may lower accuracy slightly. However, once hid-

den layers have sufficient neurons to process the information (4096 in this case), the

model performance remains stable as the layer dimension increases. In Tab. 3, re-

gardless of L, B-PCNs with hidden dim = 4096 always outperform B-PCNs with

hidden dim = 2048 by approximately 2%, but perform equivalently well as B-PCNs

with hidden dim = 10000.
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L \ hidden dim 2048 4096 6144 8000 10000

1 91.19 92.69 92.24 92.11 92.34
2 90.9 92.4 92.5 92.71 92.66
3 89.19 92.52 91.59 91.87 91.71
4 90.48 92.61 91.92 91.45 89.71

Table 3: This table shows how the number of hidden layers (columns) and the dimen-
sion of the hidden layers (rows) influence B-PCNs’ prediction accuracy over MNIST
dataset. The best accuracy is bold.

Experiments on duration: While conducting the experiments, I found the number

of epochs, H, shows weak relevance to the accuracy if training pairs are presented to

the network in a long duration, i.e., T is large enough. So I further explored how H

and duration of inference process in both the training phase and prediction phase, T

and Ttest influence the performance. Specifically, I set T to {10, 100, 500, 1000} and

Ttest to {100, 250, 1000, 2500}, running 10 epochs for each combination of parameters.

Results: The results summarized in Tabs. 4 and 5 are consistent with intuition. H

only relates to the performance when T is small, and increasing H cannot make up

for the low accuracy caused by running inference for insufficient time. With the long

enough duration of inference learning, B-PCNs only take 1 or 2 epochs to get the

best results. For example, the accuracy increases epoch by epoch when T = 10, but

approximately stays unchanged when T ≥ 100. Nevertheless, running the inference

lengthily (such as T = 1000 in this case) may cause overfitting and decrease test

accuracy. Ttest can be least important and barely influence the final results.

Overall, the best test accuracy is 92.71%, achieved by B-PCNs with 2 hidden layers,

each of 8000 neurons, running inference for 100 time steps at the training phase and

250 at the prediction phase. Detailed parameters are shown in Tab. 6.

5.1.2 SANs

Experiments on model structure: For SANs, I studied how the number of neu-

rons, N , and density of networks, s, influence the accuracy, setting N = {1000,

2500, 5000} and s = {0.01, 0.05, 0.1, 0.5, 1}.

Results: Fully connected SANs with 5000 neurons show the best performance in

classification, providing the test accuracy of 91.77%. It turns out that density can be
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H\T 10 100 500 1000

0 82.15 91.37 90.39 88.63
1 86.27 91.85 92.51 88.83
2 87.26 92.4 90.62 88.21
3 87.58 92.27 92.06 88.79
4 87.95 92.12 91.21 89.38
5 87.62 92.02 92.59 89.02

Table 4: This stable shows the relationship between the test accuracy over MNIST
dataset and the number of training epochs (columns) and the inference duration
(rows). L = 2 and hidden dim = 4096.

H\Ttest 250 2500

0 82.15 82.08
1 86.27 85.61
2 87.26 87.07
3 87.58 87.23
4 87.95 87.99
5 87.62 87.48

Table 5: This table shows the relationship between the test accuracy over MNIST
dataset and the number of training epochs (columns) and the inference duration in
the test phase (rows). L = 2, hidden dim = 4096, T = 10.

the most influential parameter. Regardless of the number of neurons, the performance

of SANs gets better as fewer connections are pruned, and fully connected SANs

perform the best. For example, in Tab. 7, the prediction accuracy is constantly below

80% when density is only 0.01, whereas constantly above 90% when the network is

fully connected. In terms of the number of neurons, N shows a stronger influence

over the performance for sparser SANs. For example, for the networks with density

0.01, the test accuracy when N = 1000, 2500, 5000 are 42.12%, 47.55% and 73.55%,

whereas for fully connected SANs with 1000, 2500, 5000 neurons, the accuracy are

91.45%, 91.76%, 91.77% (Tab. 7).

It turns out that to function CPC in both networks, we need to have the learning

rate, α, at the level of 1× 10−5, and the integration step for inference, γ, at the level

of 1× 10−1.
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Parameters B-PCNs

Input Dim 28 × 28
Output Dim 10
Hidden Dim 8000

L 2
γ 0.5
α 1× 10−5

T 100
T test 250

H 2
Batch Size (training) 500

Batch Size (test) 2000

Table 6: Parameters of the best model for classification over MNIST (B-PCNs).

N\s 0.01 0.05 0.1 0.5 1

1000 42.12 77.23 82.43 87.88 91.45
2500 47.55 76.03 83.79 84.47 91.76
5000 73.55 84.35 85.45 86.71 91.77
8000 77.09 86.38 88.0 88.88 89.76

Table 7: This figure shows the relationship between the test accuracy and the number
of neurons (columns) and the density (rows) of an assembly model. The best accuracy
is bold

5.1.3 Performance and stability

Overall accuracy: As displayed in Tab. 9, B-PCNs and SANs both show relatively

good performance in classification tasks. When we compare the results with the test

accuracy achieved by MLPs with BP [12], PCNs with CPC [12], and Hopfield net-

works [1], we can see that both models make prediction slightly less accurate than

standard MLPs or PCNs, but significantly outperforming the generative AMs, Hop-

field networks. Hopfield networks have been modified by [1] to perform discriminative

tasks to achieve task-agnostic learning, as the primary goal of this thesis. Clearly,

B-PCNs and SANs provide more promising results.

Stability: Additionally, the stability of both networks was examined by the test

accuracy of each digit. Results are displayed in Tab. 10, compared with results of

Hopfield networks. It turns out that B-PCNs can be considered the most stable,

showing at least 83.23% accuracy for all digits. SANs can be slightly less stable, but
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Parameters Single Assembly

N 5000
wd (weight decay rate) 0.5

s 1
γ 0.5
α 5× 10−5

N. of iterations (training) 5
N. of iterations (test) 2000

N. of epochs 10
Batch Size (training) 250

Batch Size (test) 2000

Table 8: Parameters of the best model for MNIST image classification (SANs).

Classic MLPs
with BP

Belyaev’s
Hopfield
network

Feed-forward
PCNs with CPC

B-PCNs SANs

98.41 61.5 98.54 92.27 91.77

Table 9: This table shows the overall test accuracy achieved by five models over
MNIST dataset. From left to right: standard deep learning network with BP [9],
Belyaev’s Hopfield network [1], Wittington’s PCNs with Song’s CPC algorithm [12],
B-PCNs, SANs.

the results are still better than those achieved by Hopfield networks.

In summary, both models have an outstanding ability to perform classification tasks

with stability. To state they are task-agnostic, we now show that they can accomplish

AM tasks.

5.2 AM tasks

Introduced in the preliminary section, associative memory tasks can be considered a

subtype of memorization problems. Hence, models are supposed to reconstruct pre-

viously learned images rather than new untrained images. In other words, the word

”reconstruction” in this section explicitly means retrieval of trained images based on

the corrupted version. Datasets used are subsets of (1) MNIST, (2) FashionM-

NIST, which includes grayscale images of items ten types of clothing, such as shoes,

trousers, dresses, and more in the dimension of 28× 28, and (3) CIFAR10, a collec-
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Digit Belyaev’s Hopfield network B-PCNs SANs

0 69 95.06 96.15
1 90.2 95.06 97.12
2 73.7 86.27 79.51
3 67.7 83.23 83.27
4 0 85.53 89.44
5 52.4 87.1 75.31
6 80.4 88.72 91.79
7 69.6 88.65 89.48
8 57.3 89.32 63.39
9 29.9 87.18 75.58

Table 10: This table shows the test accuracy of each digit in the MNIST database.
For left to right, the accuracy is achieved by Belyaev’s Hopfield network [1], B-PCNs
and SANs.

tion of 32 × 32 RGB images in ten different classes including airplanes, cars, birds,

cats, etc.

To quantify the quality of reconstructed images, this thesis uses mse to describe the

standard mean-squared error between two images (Eq. 27).

mse = MSE(img1 − img2). (27)

In this thesis, if mse ≤ 0.01, the reconstruction is considered ”correct”; if mse ≤
0.005, the reconstruction is considered ”excellent”. The rate of correct retrieval, Hc,

and the rate of excellent reconstruction, He, will be used to analyze a network’s

performance. Further, we denote the cardinality of datasets used for reconstruction

by Num and the fraction of the size of cropped images to the size of original images by

frac. When the quality of results is equivalent, larger Num and smaller frac imply

stronger capability and capacity of a model in AM tasks. We start with Num = 30

and frac = 1/2 for each model, and if the performance is satisfactory, we then ask

the model to retrieve larger datasets with small fraction pixels.

5.2.1 B-PCNs

Experiments: Experiments were conducted to analyze B-PCNs’ performance and

find the optimal structure by changing L and hidden dim. Specifically, I set the

number of hidden layers to {1, 2, 3, 4} and the dimension of hidden layers to {4096,
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Figure 11: This figure shows examples of B-PCNs’ reconstruction of images from
MNIST (left), FashionMNIST (centre) and CIFAR10 (right) database.

6144, 8000}. The inference was running for more than 10000 time steps in each case

until the network converged. After the learning phase, the top half of images were

cropped, and networks were expected to construct the whole based on the partial.

Results: In general, though theoretically capable of AM tasks, in practice, B-PCNs

showed a relatively disappointing performance. No structure outperforming the rest

in AM tasks has been detected. Samples of the reconstruction are displayed in Fig. 11.

For MNIST and FashionMNIST images, though objects are identifiable in the right

place with clear shape, some dead pixels are also incorrectly restored. The results of

CIFAR10 seem to be less reasonable.

5.2.2 SANs

Though disappointed by B-PCNs to some extent, we then delightfully find out that

SANs perform reasonably well in AM tasks in practice.

Experiments on model structure: I first performed multiple experiments by

changing the number of neurons, N , and the density of an assembly, s, to see how the

combination influences the model performance and find the optimal structure for each

type of data. Values assigned to N and s in the experiments are shown in Fig. 12.

Results: Fully-connected SANs with 8000 neurons perform the best while recon-

structing MNIST and FashionMNIST images. For MNIST, the model retrieves 97%

images correctly and 80% excellently; for FashionMNIST, 67% reconstructed images

are correct, and 43% are excellent. For CIFAR10, SANs which have 8000 neurons

and density 0.8 can reconstruct 73% images correctly and 43.33% images excellently

(Fig. 12), outperforming other pairs of (N , s). Samples of best reconstructed images

are displayed in Fig. 14.
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It can be seen that N and s influence the performance as a combination. In general,

denser SANs with more neurons guarantee a more robust ability in data retrieval

before overfitting is detected. We may also see from Fig. 12 that the performances

of sparser SANs with more neurons and denser SANs with fewer neurons can be

equivalent. For example, both a 4000-neuron SAN with 0.3 density and a 1000-neuron

assembly with density 0.5 can retrieve 20% FashionMNIST images correctly and 10%

excellently, yet a 4000-neuron assembly with density 1 is capable of reconstructing

56.66% correctly and 33.33% excellently.

However, density plays a more important role between the two parameters, as an

assembly with plenty of neurons in extremely sparse structure never shows satisfactory

performance for three types of images. For example, 10000-neuron SANs with s = 0.1

cannot correctly reconstruct any MNIST images.

Enlarging the size of assemblies by adding more neurons only significantly improves

the model performance while the assembly is currently small and has a density no less

than 0.3. This can be intuitive since more neurons usually imply a stronger ability of

memorization. However, adding neurons to a large assembly shows little enhancement

in performance. For example, when SANs with density 0.8 are reconstructing MNIST

images, Hc increases 70% and He increases 40% as N goes from 1000 to 7000, but

both remain approximately unchanged as N goes from 7000 to 10000 (Fig. 12).

Samples displayed in Fig. 13 support the statistical analysis. Noises are obvious in

MNIST images reconstructed by SANs with density 0.1 but can be barely seen in

those reconstructed by SANs with density 1, and a dense 8000-neuron assembly can

reconstruct CIFAR10 images with little noise and bright color as a 12000-neuron

assembly.

Since SANs perform well for small datasets, experiments were then conducted to

further explore the model capability and capacity in AM tasks.

Experiments on model capability: The networks were then presented with a

fewer fraction of pixels so that we can observe how the reconstruction quality changes.

Specifically, I set frac = {1/2, 1/3, 1/4, 1/5, 1/6}. The cardinality of datasets is

equal to 30 as in the previous section.

Results: It turns out both the rate of correct and excellent retrieval are much higher

when every image is half presented to the model. Even reducing frac from 1/2
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Parameters MNIST FashionMNIST CIFAR10

N 8000 8000 8000
weight decay 1 1 1

s 1 1 0.8
γ 0.5 0.5 0.5
α 5× 10−5 5× 10−5 5× 10−5

T 10000 10000 10000
T test 250 250 250

N. of epochs 1 1 1

Table 11: This table includes parameters of the best SANs in AM tasks. Full-batch
training is used in all cases.

to 1/3 significantly degrades the quality of reconstruction. For example, SANs can

reconstruct 97% FashionMNIST images correctly when presented with 1/2 of total

pixels but only 17% when presented with 1/3 (Fig. 15), and the rate of excellent

reconstruction is 43% when frac = 1/2 but only 7% when frac = 1/3. Samples

displayed in Fig. 15 directly reveal such degrading, as at frac = 1/2, the van in

the reconstruction looks identical to the original but at frac = 1/6 the dog in the

reconstruction seems not identifiable.

Experiments on model capacity: Simultaneously, I studied the network’s capacity

in image pattern storage by increasing the cardinality of datasets and observing the

Hc and He. Specifically, Num is set to {30, 50, 100, 250, 500}.

Results: It turns out that the performance of the model degrades sharply as the

cardinality of datasets increases. For example, if the network is asked to retrieve

50 MNIST images rather than 30, the rate of correct retrieval reduces to 75%, and

further reduces to below 25% when the cardinality increases to 100. Results of Fash-

ionMNIST and CIFAR10 are consistent with the statement, and samples shown in

Fig. 16 visualize the change in the performance. When Num = 500, the shape of the

reconstructed digit 2 is blurry, and its tail was barely reconstructed.

In summary, B-PCNs can perform AM tasks though further improvement in recon-

struction quality might be needed. SANs reconstruct small sets of grayscale and

color images remarkably well, though we have to admit that the performance de-

grades while a smaller quantity of pixels is presented or the size of datasets increases.

Nevertheless, they both show the capability of AM tasks, and we now apply them to

perform generation tasks to demonstrate their capability.
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Parameters MNIST FashionMNIST

Input Dim 28 × 28 28 × 28
Output Dim 10 10
Hidden Dim 4096 4096

N. of hidden layers 2 2
Activation function RELU RELU

γ 0.5 0.5
α 1× 10−5 5× 10−5

wd 1 1
N. of iterations 10 10

N. of iterations (test) 250 250
N. of epochs 1 1

Batch Size (training) 500 500
Batch Size (test) 2000 2000

Table 12: This table includes parameters of B-PCNs which can generate the MNIST
and FashionMNIST images of highest quality (samples displayed in Fig. 17)

5.3 Generation

5.3.1 Experiments

Experiments were conducted over MNIST and FashionMNIST database. After

the training phase, labels of ten classes were presented to both networks, and they

were expected to generate images based on the labels.

5.3.2 Results

Both networks showed equivalently satisfactory performance in this task. Samples

of generation of MNIST and FashionMNIST images are displayed in Fig. 17, and

parameters of the networks which achieve the results are displayed in Tabs. 12 and 13.

For B-PCNs, the network with 2 hidden layers in the dimension of 4096 can accomplish

the generation. For SANs, unlike in the AM tasks, a sparser assembly generates

images of higher quality. Overall, SANs with 6000 neurons and density 0.1 generate

MNIST images from all classes satisfactorily, and SANs with 6500 neurons and density

0.1 achieve the equivalent success for FashionMNIST. No apparent difference between

the quality of images generated by the two models has been detected.
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Parameters MNIST FashionMNIST

N 6000 6500
wd (weight decay rate) 0.1 0.1

s 0.1 0.1
γ 0.52 0.5
α 3× 10−5 3× 10−5

Activation function Sigmoid Sigmoid
N. of iterations (training) 50 50

N. of iterations (test) 5× 103 5× 103

N. of epochs 1 1
Batch Size (training) 200 200

Batch Size (test) 1× 104 1× 104

Table 13: This table includes parameters of SANs which can generate the MNIST
and FashionMNIST images of highest quality (samples displayed in Fig. 17)

5.4 Reconstruction beyond memorization

So far, experimental results demonstrate that both networks can perform the classi-

fication, generation, and AM tasks, and SANs even show satisfactorily good perfor-

mance in all three tasks. Before turning to the conclusion, I now further display some

exciting findings from another type of reconstruction experiment beyond the scope of

AMs.

Inspiration came from a reconstructed image made by SANs in AM tasks. In Fig. 18,

we see that the assembly reconstructed a dress into a pair of trousers based on the

top half of the dress. Such a mistake can be reasonable when we look at the trousers,

as the top half of both images are similar. This might indicate that rather than

constantly memorizing stiffly, the assembly network can learn the patterns and pre-

dict the cropped portion when presented with the top half. Therefore, a hypothesis

is proposed that besides reconstructing trained images, SANs can also reconstruct

partially cropped images from a test set after learning the training set. The process

is similar to the classification task: the network will be trained over large-size image

sets to learn the patterns and then predict the missing part of the partial test image

presented to it.
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5.4.1 Experiments

To apply SANs to reconstruct untrained images, we can easily realize that the mecha-

nism behind it is identical to what happens in the AM test mode, discussed in chapter

4, except that the sensory neurons will be set to the partial untrained images and

their labels. I then studied SANs capability by manipulating the model structure,

i.e., N and s and aimed to find the best model.

Other factors that influence the model’s performance can be the duration of inference

learning, T , and the size of training sets, Num. Intuitively, as in classification,

learning more extensive training sets and running inference for a longer time may

enable the networks to understand the image patterns better, and accordingly provide

a higher quality reconstruction. However, in practice, we must balance the two factors,

as setting both to large values causes great decrements in the program’s running speed.

Hence, two ideas guide the way of experiments: (1) having an extensive training set,

i.e., 30000 images, but running inference for a relatively short period (i.e., T = 3), or

(2) running inference long enough until the network converges, i.e., 10000 time steps,

but using a much smaller training set, such as a set of 3000 images.

5.4.2 Results

Samples of the best-generated images from an untrained dataset are displayed in

Fig. 18, achieved by fully connected SANs with 13000 neurons. The cardinality of

the training set is 5000, and the training session lasts 10000 time steps and 1 epoch.

Besides, unlike the AM tasks which full-batch training provide the best results, a

small batch size has been found to be able to perform better. Specifically, I set batch

size to 50 to get the results in Fig. 18.

Though the quality of the images is not remarkably high, digits are accurately con-

structed, and the shape of each digit is relatively precise. This indicates that SANs

are showing a competitive ability in learning the image patterns and can make good

prediction besides memorizing it.
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Num = 30, fraction = 1/2

Fmnist,
mse<0.01 0.1 0.3 0.5 0.8 1

Fmnist,
mse<0.00

5 0.1 0.3 0.5 0.8 1
1000 3.33% 13.33% 20.00% 36.66% 36.66% 1000 3.33% 3.33% 10% 17% 20.00%
2000 10.00% 16.66% 33.33% 46.66% 53.33% 2000 3.33% 10.00% 13.33% 20.00% 33.33%
3000 10.00% 23.33% 50.00% 53.33% 56.66% 3000 3.33% 10.00% 16.66% 26.66% 33.33%
4000 10.00% 20.00% 50.00% 53.33% 56.66% 4000 3.33% 10.00% 20.00% 33.33% 33.33%
5000 13.33% 40.00% 50.00% 56.66% 60.00% 5000 3.33% 16.66% 13.33% 33.33% 33.33%
6000 13.33% 40.00% 53.33% 56.66% 63.33% 6000 6.66% 13.33% 30.00% 36.66% 46.66%
7000 13.33% 46.66% 50.00% 56.66% 63.33% 7000 6.66% 16.66% 26.66% 33.33% 46.66%
8000 13.33% 46.66% 53.33% 63.33% 66.66% 8000 6.66% 16.66% 26.66% 43.33% 46.66%
9000 13.33% 50.00% 53.33% 60.00% 66.66% 9000 6.66% 16.66% 30.00% 36.66% 46.66%

10000 13.33% 50.00% 53.33% 60.00% 63.33% 10000 10.00% 16.66% 33.33% 40.00% 40%

Num = 30, fraction = 1/2

MNIST,
mse<0.01 0.1 0.3 0.5 0.8 1

MNIST,
mse<0.00

5 0.1 0.3 0.5 0.8 1
1000 0% 0% 0% 23.33% 53.33% 1000 0.00% 0.00% 0.00% 0% 3.33%
2000 0% 6.66% 26.66% 60.00% 80.00% 2000 0.00% 0.00% 3.33% 6.66% 37%
3000 0% 6.66% 36.66% 70.00% 90.00% 3000 0.00% 0.00% 6.66% 23.33% 43.33%
4000 0.00% 23.33% 56.66% 86.66% 90.00% 4000 0.00% 0.00% 6.66% 33.33% 43.33%
5000 0.00% 26.66% 56.66% 90.00% 90.00% 5000 0.00% 3.33% 6.66% 46.66% 46.66%
6000 0.00% 26.66% 76.66% 93.33% 93.33% 6000 0.00% 6.66% 13.33% 50.00% 60.00%
7000 0.00% 36.66% 80.00% 96.66% 96.66% 7000 0.00% 6.66% 30.00% 56.66% 66.66%
8000 0.00% 46.66% 73.33% 96.66% 96.66% 8000 0.00% 3.33% 23.33% 56.66% 80.00%
9000 0.00% 43.33% 76.66% 96.66% 96.66% 9000 0.00% 6.66% 26.66% 56.66% 73.33%

10000 0.00% 33.33% 83.33% 96.66% 96.66% 10000 0.00% 3.33% 30.00% 56.66% 80%

Num = 30, fraction = 1/2

Cifar10,
mse<0.01 0.1 0.3 0.5 0.8 1

Cifar10,
mse<0.00

5 0.1 0.3 0.5 0.8 1
4000 6.66% 36.66% 43.33% 60.00% 63.33% 4000 6.66% 10% 13.33% 30% 33.33%
5000 20.00% 43.33% 56.66% 63.33% 66.66% 5000 6.66% 16.66% 30% 33.33% 33.33%
6000 23.33% 53.33% 60.00% 70.00% 73.33% 6000 6.66% 26.66% 36.66% 36.66% 40.00%
7000 30.00% 56.66% 60.00% 70.00% 73.33% 7000 6.66% 33.33% 36.66% 43.33% 33.33%
8000 43.33% 60.00% 60.00% 73.33% 70.00% 8000 10.00% 40.00% 36.66% 43.33% 33.33%
9000 43.33% 60.00% 60.00% 73.33% 66.66% 9000 13.33% 36.66% 43.33% 40.00% 30.00%

10000 46.66% 60.00% 73.33% 66.66% 73.33% 10000 20.00% 36.66% 36.66% 36.66% 33.33%
11000 43.33% 60.00% 70% 73.33% 73.33% 11000 20.00% 40% 40% 36.66% 33.33%
12000 50.00% 60.00% 66.66% 73.33% 63.33% 12000 20.00% 40% 40% 36.66% 30%
13000 46.66% 60.00% 66.66% 73.33% 73.33% 13000 20.00% 40% 43.33% 33.33% 33.33%

Figure 12: This figure statistically shows how the combination of the number of
neurons and the network density of SANs, (N, s), influence the rate of correctly (left)
and excellently (right) retrieved images. Experiments were conducted over three
datasets, MNIST (top), FashionMNIST (centre) and CIFAR10 (bottom). In each
sequential palette, a single cell is located by (N, s) and darker color represents larger
Hc or He values, indicating that a model with N neurons and density s performs
better in the AM tasks.
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0.1 0.3 0.5 0.8 1 4000 6000 8000 10000 12000

Figure 13: This figure provides samples of reconstruction made by models which
have the same number of neurons but different density (left), or which have the same
level of density but different number of neurons (right). Each image is displayed
in the format from top to bottom: the cropped image presented to the model,
the reconstruction made by the model, the original image, the noise gained by
subtracting the reconstruction from the original.

Figure 14: Samples of the best reconstruction made by SANs for MNIST (left),
FashionMNIST (centre) and CIFAR10 (right) images. Parameters of the models are
shown in Tab 11). Overall, each reconstructed image looks identical to the original via
human eyes. For MNIST and FashionMNIST, objects are accurately reconstructed
with little noise, and for CIFAR10, the model also precisely retrieve details from both
the objects and the background, as well as the color information.
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1/2 1/3 1/4 1/5 1/6

Figure 15: This figure shows how the fraction of pixels presented to SANs influences
the rate of correct (blue) and excellent (red) reconstruction in a dataset of 30 MNIST
(top), FashionMNIST (centre) and CIFAR10 (bottom) images. Images on the right
are samples of reconstruction while frac pixels are provided, where frac = {1/2, 1/3,
1/4, 1/5, 1/6}. See Fig. 13 for detailed explanations for the format of sample displays.
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30 50 100 250 500

Figure 16: This figure shows how the cardinality of a dataset influences the rate of
correct (blue) and excellent (red) reconstruction. Images on the right are samples
of reconstructed images while models learn and retrieve a training set in the size of
Num, where Num = {30, 50, 100, 250, 500}. See Fig. 13 for detailed explanations
of the sample-displaying format.
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Recurrent Net  Residual Net       Bidirectional Net

MLP

(a) Generated by B-PCNs (b) Generated by SANs

Figure 17: This figure shows the generation results of MNIST (top) and FashionM-
NIST (bottom) images, constructed by B-PCNs (a) and SANs (b). Parameters of the
related networks are shown in Tabs. 13 and 12.

Figure 18: Left: what triggers us to conduct this experiment. While we compare
the retrieval of a dress gained in AM tasks (top) and the original (bottom), we may
realize that with the top half images provided, an assembly reconstructs the dress
to a pair of trousers, which can be an indicator of prediction. We can see from the
pictures that the top half of a dress and a trouser look similar to each other.
Right: samples of reconstructed MNIST images from a test set consisting of 50 new
images. The assembly was presented with 1/2 fraction pixels of the original (top) to
perform reconstruction (bottom).
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6 Conclusions and future work

6.1 Conclusions

In this thesis, I propose a novel hierarchical multilayer PC model, bidirectional pre-

dictive coding networks (B-PCNs), based on Wittington’s PCNs with Song’s CPC

algorithm. Then I break the multilayer structure and generalize B-PCNs to a novel

model consisting of a cluster of neurons without hierarchical structure, the single

assembly networks (SANs). Application of B-PCNs and SANs to classification, gen-

eration, and AM tasks demonstrate their capability of task-agnostic learning. In

general, both models perform equivalently well even compared to some classic task-

specific models. For classification, B-PCNs achieves the best prediction accuracy of

92.71%, and SANs accomplish the best of 91.77%. For AM tasks, B-PCNs shows

reasonable capability of reconstructing grayscale images, and fully connected SANs

retrieve 97% MNIST images and 67% FashionMNIST images correctly when the car-

dinality of datasets presented is not large. Simultaneously, the generation results of

both models are of relatively high quality. Therefore, both models are deemed be

task-agnostic. They can flexibly switch test modes in each mode after the training

phase and have the capability of performing each type of task relatively well.

Further, I propose a method that can precisely carve the structure of SANs by mul-

tiplying a 1-hot mask matrix M to the weight matrix θ̄. This allows the creation

of various types of neural networks such as MLPs and B-PCNs, achieving an ex-

traordinary efficiency in architecture construction. Moreover, MLPs constructed by

the manipulation of SANs’ weights have been proven to achieve equivalently high

prediction accuracy in the classification of MNIST images as [12].

Excitingly, it has been found that SANs can reconstruct corrupted images from a new

test set after learning an extensive training set, which indicates that the model can

not only memorize trained images but use its knowledge to predict image patterns.

Findings of this thesis are believed to be of both theoretical and practical importance

— the achievement of task-agnostic learning bridges the disciplines of theoretical neu-

roscience and machine learning and significantly increases the biological plausibility

of deep neural networks.
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6.2 Future work

6.2.1 Improving B-PCNs’ performance in AM tasks

One can aim to improve B-PCNs’ performance in AM tasks, figuring out ways to

reduce the noise of current retrieval. Further, one can find better methods to apply B-

PCNs to process RGB images, reconstructing CIFAR10 images with more identifiable

objects and less noise.

6.2.2 Improving SANs’ capacity in AM tasks

Now SANs only show satisfactory performance in AM tasks while the cardinality

of the dataset is small and half pixels are presented. Therefore, finding a way to

generalize its capability to retrieve larger datasets with fewer pixels presented can be

a direction for future research.

6.2.3 Improving SANs’ performance in the reconstruction of untrained
images

In chapter 5.4, reconstruction of untrained images has been accomplished, yet the

quality can be further improved. One may figure out a way to reconstruct the test

images of higher quality or apply SANs to reconstruct new FashionMNIST and CI-

FAR10 images.

6.2.4 Generalizing the carving method

This thesis has theoretically proved that standard neural networks can be constructed

by pruning specific edges of fully connected SANs. However, in practice, it only

includes experimental results of MLPs and B-PCNs constructed via this method. In

the future, One may try different variations of MLPs and experimentally demonstrate

their equivalence to the models constructed via classic methods.
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